Развитие образования
учебно-методический центр

 

 Математика уступает свои крепости лишь сильным и смелым. (А.П. Конфорович)

  Первое условие, которое надлежит выполнять в математике, - это быть точным, второе - быть ясным и, насколько можно, простым. (Л. Карно)

        Олимпиада по математике имеет давнюю историю. Первый очный математический конкурс для выпускников лицеев был проведен в Румынии в 1886 году, а первая математическая олимпиада в современном смысле состоялась в 1894 году в Венгрии по инициативе Венгерского физико-математического общества. Во многих странах олимпиадам предшествовали различные заочные конкурсы по решению задач. Так, например, в России они начали проводиться с 1886 года.

        Первая математическая олимпиада в России была организована в Ленинграде в 1934 году по инициативе замечательного математика Б.Н.Делоне. Уже на следующий год городская олимпиада прошла в Москве. Первой математической олимпиадой, в которой приняли участие несколько областей РСФСР, стала проводившаяся в Москве олимпиада 1960 года. Её иногда называют «нулевой» Всероссийской математической олимпиадой школьников. Официальная нумерация началась с 1961 года. На первую Всероссийскую математическую олимпиаду приехали команды почти всех областей РСФСР. Также были приглашены команды союзных республик. Фактически эти олимпиады стали Всесоюзными, ведь в них принимали участие победители республиканских олимпиад. С 1967 года эта олимпиада получила официальное название — «Всесоюзная олимпиада школьников по математике».  

         Сегодня, в век постиндустриального, информационного общества, возрастает роль естественно-математических знаний, и это требует целенаправленных усилий по развитию интересов и способностей учащихся в области естественно- математических наук.

          Одной из наиболее значимых форм повышенной математической подготовки являются математические олимпиады. Предметные олимпиады школьников в условиях современной школы - действенное средство формирования мотивации к учению, повышения познавательной активности учащихся, развития их творческих способностей, углубления и расширения знаний школьника по предмету. В отличие от типовых учебных примеров и упражнений, «олимпиадные» задачи не имеют общего алгоритма решения. Каждая такая задача уникальна и требует применения новых идей для решения, но не специальных знаний, т.е. для её решения достаточно знания обычной школьной программы.

          Ни в одной стране мира олимпиадное движение не достигало подобного размаха, не было столь массовым. Популярность олимпиад свидетельствует о том интересе, который вызывают у учащихся математические соревнования, и показывает, что в наше время олимпиады являются важным средством развития математических способностей учащихся. 

Приказы 1

Методические рекомендации 2

Задания и ответы 2

Последние новости

Архив приказы 5

Архив методические рекомендации 4

Архив задания и ответы 2

Архив протоколы 7